
Automating Network Infrastructures
with Ansible on FreeBSD

Firebird Networks Belgium

Introductions

• Network Consultant and Co-Founder of Firebird Networks

• Points of interest: datacenter networks, service provider architecture,
network automation

State of Network Automation

Network Agility

Automation vs. Orchestration

• What is automation?

• Automation eliminates the necessity of repeatable manual tasks

• What is orchestration?

• Orchestration is the manner in which automated tasks are grouped
together in coordinated workflows

Part I: Introducing Ansible

“What is Ansible?”
• “Ansible is a super-simple automation platform that is agentless and

extensible”

• By simple it means that you don’t need any coding knowledge to get
started

• Agentless means that you do not require an agent on each device in
order to be able to control them (important for vendor-locked network
devices)

• Extensible means that it benefits from the open-source community and
things will be built for it.

Basic Ansible Architecture
• Ansible = automation platform

• Can be installed on every laptop or just a central server.

• Use pip, apt or yum or pkg to install on *nix-based machines

• All automation is performed out of the device that hosts the installation of
Ansible (also known as a control host)

• Uses the notion of playbooks - a set of automation tasks and instructions
which are pushed for execution on specific hosts.

Playbooks
• From ansible.com: “Playbooks are Ansible’s configuration, deployment,

and orchestration language. They can describe a policy you want your
remote systems to enforce, or a set of steps in a general IT process.”

• Playbooks are similar to an Ikea instruction manual that breaks the entire
process of configuring a router, or a BGP process or whatever else into
small little tasks and delegates the interaction witht he devices.

• Best feature: human-readable (if you like YAML)

• Check more examples out: https://github.com/ansible/ansible-examples

http://ansible.com
https://github.com/ansible/ansible-examples

YAML
• Ansible Playbooks are expressed using YAML syntax

• YAML - YAML Ain’t Markup Language

• YAML uses a small amount of separators - indentation gives structure, colons separate
keys, and dashes create bullet lists

• Every YAML file must start with - - - and end with . . .

• Members of a list are marked with a dash (- Apple)

• Dictionary terms are a pair separated by a colon - key: value (yes, the space between the
two is necessary)

• More syntax documentation: http://docs.ansible.com/ansible/latest/YAMLSyntax.html

http://docs.ansible.com/ansible/latest/YAMLSyntax.html

Templates
• Ansible uses the Python-based Jinia2 templating language

• A template is a standard configuration without its variables

• Internally based on Unicode, it is inspired by Django’s templating system

• Jinjia supports a few control structures like if and for-loops making it easy
to shorten your templates

• A good starter for understanding Jinia templates:
https://realpython.com/blog/python/primer-on-jinja-templating/

https://realpython.com/blog/python/primer-on-jinja-templating/

From Configuration to Jinjia
Template

!

router bgp {{ as_number }}

!

neighbor {{ ip_neighbor }}

remote-as {{ as_number }}

password {{ md5_password }}

ebgp-multihop {{ mhop_value }}

update-source {{ update_if }}

address-family ipv4 unicast

!

From Configuration to Jinjia
Template

contents of leaf_vni.j2

!

!

{ % for vlan in vlans % }

vlan {{ vlan.id }}

name {{ vlan.name }}

vni {{ vni.id }}

{% endfor %}

!

Variables and Variable Files

• Double curly brackets = variables

• Variables are not stored in the
templates

• Variables are stored in variable files

• Example variable file

Basic Working Ansible Playbook
• Premises: Build the most basic playbook that can check time on 2

devices

• Step 1: Build the “Playbook” file

Basic Working Ansible Playbook

• Make sure your
inventory is up to date

• And then just run the
playbook by typing
ansible-playbook
file_name.yml

Summary of a Simple Ansible Playbook

• Every Ansible Playbook will be written in YAML, has a specific necessity
for beginning with - - - and ending with . . .

• It needs a method to connect to its devices which are stored in an
inventory file

• When templates need to be applied, a template file is used - Jinjia2 is the
preferred templating language

• The values that are introduced for each of the devices for each of the
templates are stored in a variable file which is also a .j2 file

Part II: FreeBSD for Network Engineers

• Setting up a new VM with ansible & python in a matter of minutes

• Executing playbooks and working around known caveats

Getting Ansible on Your FreeBSD
Machine

• Setting up Ansible on FreeBSD means setting up your control machine.
You can do this in a jail, you can have it running as a VM somewhere, or
as a bare-metal machine.

• The obvious requirement is that it needs to be able to access the hosts
that it should “manage” (more a network problem than a server problem)

• Tip: Make sure your username is in the sudoers group (especially if you
provision a new machine)

Preparing your machine
• Have OpenSSH up and running on your machine

$ service -e | grep sshd

/etc/rc.d/sshd

• If it’s not running, make sure you add & activate it at boot:

echo 'sshd_enable="YES"' >> /etc/rc.conf

service sshd start

• Install ansible & python in one command:

pkg install ansible python

Quick Checks

The ansible_python_interpreter caveat

• FreeBSD (OpenBSD too for that matter) doesn’t come with
/usr/bin/python

• The ports don't install a "python" package, actually: they install a version
of python, named after the version

The ansible_python_interpreter caveat

The ansible_python_interpreter caveat

• One solution is to just add it to your hosts files and pass it as a variable.

• This also allows you to use different versions of Python depending on the
scripts that you want to use.

Examples of Playbooks and Network Applications

-Unknown

“To err is human, to apply that error to 1000 servers at once is DevOps.”

Questions?

Thank you!

